垂直腔面发射激光器横模控制方法的研究进展

王翔媛,崔碧峰*,李彩芳,许建荣,王豪杰

北京工业大学信息学部,光电子技术教育部重点实验室,北京 100124

摘要 垂直腔面发射激光器(VCSEL)作为理想的激光光源,具有广阔的发展前景。在光纤通信、光互连以及激光 打印等应用领域中,大多要求VCSEL工作在基横模状态,而由于VCSEL自身的结构特点,易于激射出多横模,因 此对VCSEL横向模式的限制成为了研究热点。本文综述了VCSEL横模控制方法的研究报道,分类分析了光子 晶体、表面浮雕、反波导、扩展谐振腔以及高对比度光栅结构等横模控制方法的研究进展。

关键词 激光器;垂直腔面发射激光器;基横模;控制方法 中图分类号 TN365 文献标志码 A

doi: 10. 3788/LOP202158. 0700008

Research Progress of Transverse Mode Control for Vertical Cavity Surface Emitting Lasers

Wang Xiangyuan, Cui Bifeng^{*}, Li Caifang, Xu Jianrong, Wang Haojie
 Key Laboratory of Opto-Electronics Technology of Ministry of Education,
 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract Vertical cavity surface emitting laser (VCSEL) as an ideal laser light source has a broad development prospect. In the application fields of optical fiber communication, optical interconnection, and laser printing, VCSEL is required to work in a single fundamental mode. Due to the structural characteristics of VCSEL, it is easy to shoot multiple horizontal modes, so the limitation of the lateral mode of VCSEL has become a research hotspot. In this paper, the research reports of VCSEL transverse mode control method are reviewed, and the research progress of photonic crystal, surface relief, anti-waveguide, extended resonator, and high contrast grating structure is classified and analyzed.

Key wordslasers; vertical cavity surface emitting laser; fundamental transverse mode; control methodOCIS codes140.3570; 060.2430; 130.5990

1 引 言

近年来,随着通信技术的高速发展,提高数据 传输速率变得尤为重要,而当器件集成度过高时, 会出现"电子瓶颈"效应^[1],此时仅依赖电子传输信 息,无法满足信息交互的需求。为了实现信息的超 高速传输,利用光子器件的优越性,光纤通信、光互 连、光传感以及光信息处理等技术应运而生。作为 光信息技术的核心器件,垂直腔面发射激光器 (VCSEL)具有低阈值电流、低功耗、小发散角、动态 单纵模、高调制效率、圆形光斑、面发射易于二维集 成等优点^[24],是光纤通信、光互连等领域的理想光

收稿日期: 2020-08-10; 修回日期: 2020-09-04; 录用日期: 2020-09-08

基金项目:国家自然科学基金(11204009)、北京市自然科学基金(4142005,4182014)、北京市科技计划一般项目 (KM201810005025)

^{*}E-mail: cbf@bjut.edu.cn

综 述

源,一直受到国内外研究机构的重视。

基横模 VCSEL 是光纤通信、光互连、激光打印 等应用领域的首选器件^[5-6],因为只有稳定的基横模 器件才能够保证光斑能量无暗纹,发散角小,而且 基横模也是纵模稳定工作的必要条件。对于常规 氧化限制型 VCSEL 来说,通常当氧化孔径小于 4 µm时,器件可以工作在基横模状态^[7]。但这种利 用较小氧化孔径结构制备的基横模器件,存在器件 输出光功率低、串联电阻大、制备困难、热稳定性及 可靠性差等问题^[8-10]。因此,在大氧化孔径条件下实 现 VCSEL 基横模高功率输出,一直以来是研究人 员关注的焦点。

本文对VCSEL横模控制方法的研究报道进行 了分析和总结,详细介绍了各种横模控制方法的研 究进展,为之后VCSEL横模控制方法的研究提供 了理论及实验指导。

2 VCSEL横模控制方法

2.1 光子晶体结构

光子晶体(PC)VCSEL运用光子晶体的光子局 域特性,通过在上分布式布拉格反射器(DBR)表面 刻蚀光子晶体结构,利用光子晶体图形与缺陷区域 之间的折射率差异,使光限制在光子晶体的缺陷区 域内,改变了腔内的横向模式分布,实现了大氧化 孔径下的稳定单模输出。

光子晶体 VCSEL 首次由 Unold 等^[11]提出,其扫 描电镜图(SEM)如图1所示,通过在顶部DBR上刻 蚀光子晶体孔洞实现了单模输出,其中对于氧化孔

图 1 光子晶体 VCSEL 的扫描电镜图^[11] Fig. 1 SEM image of a photonic crystal VCSEL^[11]

径 12 μm 的 980 nmVCSEL,最大单模输出功率为 0.45 mW, 阈值电流为10 mA。自此以后, 大家开 始对光子晶体VCSEL的结构进行了不同设计。伊 利诺伊大学的Danner课题组首次采用聚焦离子束 刻蚀的后工艺技术,并结合电感耦合等离子体刻蚀 将光子晶体孔蚀刻到预制的 VCSEL 中, 分别制备 了图2的单缺陷和7点缺陷的PC VCSEL, 且均实 现了单模激射^[12],其区别在于图2(b)中缺陷区域面 积稍大,增加了发光面积,并且对比光谱图可以看 出,缺陷孔数量的增加可以扩大光的限制范围,相 对提高了边模抑制比。之后他们又设计了新的光 子晶体孔的排列方式,制备了双缺陷耦合的光子晶 体 VCSEL^[13],图 3 为该光子晶体阵列的分布图,其 在轴向上有两个PC缺陷,将器件a和b的中心孔洞 直径分别设置为3.2 μm 和2.3 μm,远场测量结果 对应图4中的a和b曲线,远场剖面图表明控制光子 晶体孔的直径可以实现对耦合的控制,从而实现 VCSEL 单模高功率输出,这也为提高相干耦合激 光器轴上光功率提供了新思路。

图 2 光子晶体缺陷基本激射模式的近场模式和光谱图^[12]。(a)单缺陷;(b)7点缺陷

Fig. 2 Near-field pattern and spectra of photonic crystal defect fundamental lasing mode^[12]. (a) Single defect; (b) 7-point defect

随着对 PC VCSEL 结构的不断探索,Lee 等^[14] 提出正方形晶格 PC VCSEL[图 5(a)],并分别对不 同氧化孔径的 VCSEL 制备了不同晶格常数的光子 晶体图形,其中氧化孔径为16 µm、晶格常数为5 µm 的 PC VCSEL 的单模输出功率约为1 mW。在光子 晶体刻蚀的启发下,他们改变了孔洞直径,非对称 地引入两个小孔洞,增加了有效腔面积,使光在水 平与竖直方向的限制效果不同,其光谱分离度比常 规的 PC VCSEL大,提高了极化选择性,可以有效 地实现单偏振和单模操作,并观察到优化的

defect

图3双缺陷的光子晶体 VCSEL 的近场图^[13]

Fig. 3 Near-field image of photonic crystal VCSEL with two defects^[13]

图 4 非耦合缺陷和耦合缺陷的远场强度分布^[13] Fig. 4 Far-field intensity profiles for uncoupled and coupled defects^[13]

图 5 PC VCSEL 结构^[14]。(a) 正方形晶格 PC VCSEL 的扫 描电镜图;(b)优化的 PC VCSEL

Fig. 5 Structure of PC VCSEL^[14]. (a) SEM image of square-lattice PC VCSEL; (b) modified PC VCSEL

PC VCSEL 偏振选择与晶体取向无关,即两个小孔 在*X*、Y轴的偏振效果相同[图 5(b)]。

由于量子点(QD)VCSEL^[15]具有增益谱窄、微 分增益高以及阈值电流密度低等优点,Yang等^[16]结 合光子晶体结构制作了用于光纤通信的量子点光 子晶体VCSEL,其结构如图6所示,可以看出,随着 工艺条件的改进,光子晶体图案变得圆滑,孔洞质 量得到提高,成功制备了量子点PC VCSEL,其中 990 nm 波段 VCSEL 输出功率为5.7 mW,阈值电 流为5 mA; 1.3 μm 波段 VCSEL 输出功率为 0.2 mW,阈值电流为4.75 mA,边模抑制比均超过 35 dB,且展现出良好的单模特性。

图 6 量子点光子晶体 VCSEL 原理图^[16]。(a)光子晶体结构; (b)剖面图

Fig. 6 Schematic of QD PC VCSEL^[16]. (a) PC structure; (b) cross-sectional view

国内对光子晶体 VCSEL 的研究起步相对较 晚,2007年中国科学院半导体研究所^[17]在国内首次 成功研制了 PC VCSEL,摸索了其制备工艺及测试 方法,并研究了刻蚀深度和光子晶体参数对激光器 单模条件的影响,为进一步实现单模 PC VCSEL奠 定了基础。之后 Xie等^[18]通过优化 PC VCSEL 的氧 化孔径与出光孔径之间的关系,制备出基横模输出 功率为 3.1 mW、阈值电流为 0.9 mA、边模抑制比 为 35 dB 的 850 nm PC VCSEL。

其实,由于光子晶体 VCSEL 设计上的简易性 和制造上的可重复性,光子晶体结构在实现单模 VCSEL方面具有较大的优化潜力。通过适当选择 孔的深度、直径和排列方式,可以使用这种折射率 限制来制备高输出功率和低阈值电流的单模光子 晶体缺陷 VCSEL。

2.2 表面浮雕结构

表面浮雕(SR)结构是制备基横模VCSEL的有效方法。通过在器件的出光面刻蚀表面浮雕图形,即在普通氧化限制型VCSEL的上DBR表面高阶模激射区域刻蚀一定深度,增大其镜面损耗,使高阶模式的镜面反射率相对降低,从而达到抑制高阶模激射的目的,有效实现基横模稳定输出。

Martinsson 等^[19]于 2000 年 报 道 了 表 面 浮 雕 VCSEL(图 7),他们将出光孔表面的DBR高阶模环

图 7 刻蚀表面浮雕的 VCSEL示意图^[19] Fig. 7 Schematic of VCSEL with etched surface-relief^[19]

综 述

形区域刻蚀一定深度,出光孔的中心区域不发生变 化,从而出光孔中心部位呈现凸起的形状,形成表 面浮雕结构,当氧化孔径为9µm、表面浮雕直径为 4 µm、注入电流为6 mA时,850 nm VCSEL的单模 输出功率为2.2 mW。受刻蚀表面浮雕以及光子晶 体结构的影响,日本的Furukawa等^[20]通过在高阶模 式区域刻蚀三角形孔洞结构制备了图8的VCSEL, 并在氧化孔径为15 µm时,设计了图9所示的两种 三角形孔洞分布,稀疏的排列方式使得中心区域的 直径增加,输出功率提高,最终实现了850 nm VCSEL 阈值电流为5mA、功率为7mW的稳定单 模输出。此后 Xu 等^[21]报道了将 SR 用于 1.3 µm 波 段的量子点 VCSEL,其结构如图 10 所示,采用双台 氧化工艺,且无需介质,降低了工艺难度,当氧化孔 径为15 μm时,基横模输出功率达3.42 mW,阈值 电流为2.15 mA。

图 8 三角形孔洞的 VCSEL 结构^[20]

图 9 光-电流特性近场模式及光谱^[20]

与圆形台面 VCSEL 相比,矩形台面 VCSEL 具 有一定优势,其在有源区面积增大的情况下,电流 密度分布不发生变化,受此启发,2014年中国科学

图 10 采用表面浮雕技术的 1.3 μm 量子点 VCSEL^[21] Fig. 10 Schematic of 1.3 μm QD VCSEL with surfacerelief technique^[21]

院长春光学精密机械与物理研究所报道了图 11 所示的浅面浮雕矩形台面 VCSEL,将出光孔表面的边缘区域刻蚀 0.5 对 DBR,结果显示,浅面浮雕结构的矩形台面 VCSEL可实现输出功率为 5.87 mW、边模抑制比大于 30 dB 的单模输出^[22]。

图 11 制作 VCSEL 的工艺结构^[22] Fig. 11 Structure of fabricated VCSEL^[22]

此外,Unold等^[23]对表面浮雕VCSEL有深入的研究,利用浅表面浮雕刻蚀技术,当注入电流为4mA时,氧化孔径为7µm的850nmVCSEL实现了功率为2mW的基横模输出,氧化孔径为5.8µm的980nm波段SRVCSEL中基横模输出功率达5.7mW^[24]。之后为了更好地控制偏振特性,改变了表面浮雕的形状,提出了图12所示的椭圆形SRVCSEL结构,实验发现,器件的偏振光沿椭圆长轴方向,这为实现单模和单偏振提供了理论依据^[25]。

可见,表面浮雕刻蚀技术可改善VCSEL的光谱 质量,实现单模输出。与普通VCSEL的制备工艺相 比,表面浮雕VCSEL仅增加一次光刻和腐蚀工艺,因 此制备方法较简单。但其缺点是高阶模式损耗区对 于腐蚀精度要求极高,稍有偏差就会影响选模效果。

2.3 扩展谐振腔结构

扩展谐振腔结构基于单片集成技术,通过扩展 谐振腔可以实现模式选择,而较大的氧化孔径可以 减小串联电阻,从而保证 VCSEL 在较大的氧化孔 径下实现单模高功率稳定输出。

综 述

Deppe等^[26]首次研究了单片长腔的VCSEL,器 件结构如图13所示,通过在DBR与有源区之间插 入一定厚度的 spacer 层来获得高空间相干性的 VCSEL,实验获得了发散角仅有1.6°的圆形对称光 束,且输出光谱为单模。为了更好地研究 spacer 层 厚度对 VCSEL 单模输出特性的影响, Unold 等^[27]制 备并测量了不同厚度 spacer 层对应的 VCSEL 输出 特性,在氧化孔径为7 µm、spacer 厚度为4 µm、注入 电流为9mA的条件下,获得了单模输出功率为 5 mW 的 980 nm VCSEL, 且改善了器件的热阻。 之后 Wiemer 等^[28] 报道了 980 nm 高功率单片长腔 VCSEL,其中阈值电流为9.1mA,基横模输出功率 为7.8 mW。但VCSEL 腔长增加会受到一定的限 制,为解决该问题,Fischer等^[29]报道了图14所示的 耦合谐振腔 VCSEL 结构,其顶部和底部腔中均含 有GaAs量子阱结构,通过将电流独立注入到两个腔 中,可以选择耦合模式,最终在氧化孔径为10 μm、

注入电流为5mA的条件下,实现了850nm VCSEL 功率约为5.2mW的基横模输出。

随着研究的不断深入,采用外部反射镜实现大 功率单模 VCSEL 的工作有了一定进展,Kardosh 等^[30]报道了图 15 所示的 VCSEL 与弯曲介质反射镜 的单片集成结构,该结构在 VCSEL 衬底制作光刻 胶图案,其表面的 TiO₂/SiO₂ DBR 为激光操作提供 了充分的光反馈,氧化孔径为9 μm 的底发射 VCSEL 在 980 nm 波段单模输出功率可达 15 mW, 阈值电流为7.5 mA。

实际上VCSEL的腔长相对较短,适当延长谐振 腔将有利于较大孔径器件的单模输出,同时可降低 发散角和热阻。但扩展谐振腔涉及复杂的工艺且对 位错和机械扰动高度敏感,制备有一定的难度。

2.4 反波导结构

反谐振反射光波导(ARROW)结构是实现单模 大功率 VCSEL 的方法之一,由于反波导结构中不 同区域的折射率分布差异,所形成的ARROW 结构

综 述

中高阶模振荡区域的光程差发生改变,难以形成有效的驻波模式,导致高阶模的损耗较大,抑制了高阶模激射,从而在大孔径条件下获得基横模输出。

1995年Wu等^[31]开始了在反波导VCSEL领域的 研究,图16为反波导VCSEL的结构图,反波导区使 高阶模在包层附近有较高的强度分布,高阶横模损耗 相对较大从而被抑制,实验演示了固定偏振方向的基 横模VCSEL,最终在16 µm的大氧化孔径下,实现了 910 nm 波段VCSEL 功率约为1.2 mW的基横模激 射,其阈值电流仅为0.8 mA。为了提高基横模功率, 韩国电子与通讯实验室的Yoo等^[32]改进了工艺,利用 无定型GaAs掩埋的方法,制备了990 nm VCSEL,其 单模输出功率为1.5 mW,阈值电流为0.5 mA。

由于这种反波导结构中基横模损耗相对较大, 输出功率受到限制。于是结合DBR的概念,Zhou 等^[33]采用图17所示的ARROW结构,在8μm孔径 下实现了980 nm波段ARROW VCSEL连续波单 模输出功率为7.1 mW。在反波导VCSEL制备相

图 17 ARROW VCSEL 剖面图^[33]

对成熟的状态下,Tee等^[34]研究了其瞬态响应,表明 了反波导VCSEL具有实现高消光比、单模输出的 潜力。最近Więckowska等^[35]提出了一种新型氧化 物岛的ARROW VCSEL,图18为一个具有双氧化 层的VCSEL的结构图,一层提供横向光场和电流 约束,另一层形成氧化岛,并发现该结构改善了 VCSEL的单模发射性能。

图 18 具有氧化物岛的 ARROW VCSEL 结构^[35] Fig. 18 ARROW VCSEL structure with oxide island^[35]

由此可见,反波导结构具有实现大孔径单模输出的优势和前景。但是其制备需要二次外延技术,工艺 比较复杂,且对位错、机械扰动高度敏感。不过通过 改进二次外延技术和优化器件设计,可以充分利用 ARROW结构的优点,获得更高功率的单模输出。

2.5 高对比度光栅结构

高对比度光栅(HCG)优化了传统的DBR结构,减少了DBR的对数,由于其反射率可以随入射角度变化^[36],通过设计和优化光栅结构的尺寸可以抑制高阶横模,在更大孔径下实现单模操作,从而提供更高的输出功率。

2007年Zhou等^[37]报道了图19所示的高对比度 亚波长光栅VCSEL,其顶部反射镜由4对DBR和一

图 19 HCG集成 VCSEL 的截面示意图^[37]

综 述

个高反射 HCG 组成,提供了较强的光反馈,在氧化 孔径为 10 μm 时获得 850 nm VCSEL 输出功率为 2 mW、边模抑制比为 30 dB、阈值电流为 4 mA 的基 横模激射。在此影响下,Kashino等^[38]使用高度角相 关的 HCG 反射镜对 980 nm VCSEL 的横模控制进 行了研究,图 20 阐明了 HCG VCSEL 横模控制的基 本思想,每个横模的角度不同,利用该方法可以抑制 所有高阶模,在氧化孔径为 6 μm 时,980 nm VCSEL 的最大输出功率为 0.5 mW,阈值电流为 1 mA,并且 优化 HCG 的反射率可以提高其输出功率。

图 20 HCG VCSEL 横模控制^[38]。(a)示意图;(b) VCSEL 横向控制时HCG的角依赖计算

Fig. 20 HCG VCSEL transverse mode control^[38].
(a) Schematic; (b) calculated angular dependence of HCG for transverse-mode control of VCSEL

为了进一步提高DBR的反射率,郑舟等^[30]设计 了图 21 所示的 VCSEL结构,把液晶作为 HCG 的低 折射率材料,将其与 VCSEL结合不仅减小了外延

图 21 Si-SiO₂ HCG 结构示意图^[39]。(a)三维结构示意图; (b)填充液晶后光栅的截面图

Fig. 21 Structure diagram of Si-SiO₂ HCG^[30]. (a) Threedimensional structure diagram; (b) cross-sectional view of grating after filling liquid crystal

层厚度,而且具有良好的偏振选择性,保证了 VCSEL的稳定输出,推进了液晶可调谐VCSEL的 实用化进程。

高对比度光栅结构的VCSEL除了可实现单一 横模外,与其他方法相比,它还具有偏振模式选择、 快速波长调谐等良好的特性,是一种有潜力的制备 基横模高功率VCSEL的技术手段。

2.6 五种横模控制方法的分析比较

目前,横模控制方法主要用于850 nm和 980 nm波段的VCSEL,从表1可以看出,850 nm波 段采用扩展谐振腔以及表面浮雕结构获得的基横 模输出功率较大,其中最大基横模功率为7 mW。 而980 nm波段采用扩展谐振腔以及反波导结构获

表1 不同横模控制方法下850 nm~1.3 μm 波段 VCSEL 的基横模功率对比

Table 1 Fundamental transverse mode power comparison of 850 nm—1.3 µm band VCSEL under different transverse mode control methods

Time	Wavelength /nm	Method	Threshold current /mA	Power /mW	Operating current /mA	Oxide aperture $/\mu m$
1999	850	Surface relief ^[23]	1.5	2	4	7
2000	850	Surface relief ^[19]	2.2	2.2	6	9
2000	850	Extended resonator ^[29]	1.5	5.2	13.7	10
2004	850	Surface relief ^[20]	5	7	—	15
2007	850	HCG ^[37]	4	2	10	10
2012	850	$PC^{[18]}$	0.9	3.1	10	8
2000	980	Extended resonator ^[27]	1.5	5	9	7
2001	980	$PC^{[9]}$	10	0.45	48	12
2001	980	Surface relief ^[21]	3	5.7	7	7
2002	980	ARROW ^[30]	16	7.1	22	8
2005	980	Extended resonator ^[25]	9.1	7.8	35	6
2008	980	Extended resonator [27]	7.5	15	38	9
2013	980	HCG ^[38]	1	0.5	3	6
1996	990	ARROW ^[32]	0.5	1.5	7.5	10
2008	$990_{(\text{QD})}$	$PC^{[16]}$	4.2	5.7	35	18
2008	$1300_{\rm (QD)}$	$PC^{[16]}$	4.75	0.25	6	26
2011	$1300_{(QD)}$	Surface relief ^[21]	2.15	3.42	_	15

综 述

得的基横模输出功率较大,最大基横模功率高达 15 mW。此外,对于长波长波段的VCSEL,设计了 光子晶体以及表面浮雕结构的量子点VCSEL,其 中采用光子晶体结构,1.3 μm波段的量子点 VCSEL基横模输出功率仅为0.2 mW,而采用表面 浮雕结构实现了1.3 μm波段功率为3.42 mW的单 模输出。由此看来,对于特定波长的VCSEL,尽管 有些方法的基横模输出功率不够理想,但其光束质 量相对较好,故仍有优化空间。

3 结束语

本文对 VCSEL 横模控制方法进行了全面总 结,概述了5种在大氧化孔径下实现VCSEL高功率 基横模稳定输出的方法。为了解决氧化孔径与单模 高功率输出之间的矛盾,国内外研究者针对在大氧 化孔径下实现单模输出的方法进行了不同的探索, 本文介绍了利用光子晶体、表面浮雕、反波导、扩展 谐振腔以及高对比度光栅结构来实现VCSEL高功 率基横模输出的方法。随着对VCSEL横模控制方 法的不断尝试,研究人员开始采用光子晶体、表面浮 雕、反波导以及扩展谐振腔结构实现对VCSEL横 模的控制,上述研究方法有力推动了单模 VCSEL 的研究进展,但这些结构通常要求精确的设计与自 对准技术,在器件的制备方面存在一定困难,因此要 进一步完善以满足应用需求。经过不断深入研究, 研究人员探索出了新的技术手段,转为用高对比度 光栅结构实现对 VCSEL 横模的控制,这不仅解决 了高反射DBR材料选择的问题,也避免了复杂的工 艺,而且可以实现单一横模、偏振模式选择以及快速 波长调谐等功能,应用前景广阔。

在实际应用中单模高功率VCSEL有较大市场 发展空间,而目前的单模VCSEL的功率仍然较低, 无法很好满足需求,因此需要探索制定出更理想的方 案,实现单模高功率VCSEL在光纤通信、激光打印、 光谱学、传感以及生物光子学等领域的大规模应用。

参考文献

[1] Mangaser R, Rose K. Estimating interconnect performance for a new National Technology Roadmap for Semiconductors [C]//Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat. No. 98EX102), June 3-3, 1998, San Francisco, CA, USA. New York: IEEE Press, 1998: 253-255.

- [2] Xie Y Y, Kan Q, Xu C, et al. Low threshold current single-fundamental-mode photonic crystal VCSELs[J]. IEEE Photonics Technology Letters, 2012, 24(6): 464-466.
- [3] Jager R, Grabherr M, Jung C, et al. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs [J]. Electronics Letters, 1997, 33 (4): 330-331.
- [4] Alias M S, Leisher P O, Choquette K D, et al. Efficiency and spectral characteristics of 850 nm oxideconfined vertical-cavity surface-emitting lasers [C]// 2006 IEEE International Conference on Semiconductor Electronics, October 29-December 1, 2006, Kuala Lumpur, Malaysia. New York: IEEE Press, 2006: 231-235.
- [5] Pian S J, Ullah S, Yang Q, et al. Single-mode semiconductor nanowire lasers [J]. Chinese Journal of Lasers, 2020, 47(7): 0701003.
 片思杰, Ullah Salman, 杨青,等. 单模半导体纳米 线激光器[J]. 中国激光, 2020, 47(7): 0701003.
- [6] Tang Y, Cao C F, Zhao X Y, et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers [J]. Laser & Optoelectronics Progress, 2019, 56(13): 131402.
 汤瑜,曹春芳,赵旭熠,等.InGaAs/GaAs/InGaP 量子阱激光器的激光单模特性研究[J].激光与光电子学进展, 2019, 56(13): 131402.
- [7] Unold H J, Mahmoud S W Z, Jager R, et al. Largearea single-mode VCSELs and the self-aligned surface relief[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(2): 386-392.
- [8] Choquette K D, Chow W W, Hadley G R, et al. Properties of small-aperture selectively oxidized VCSELs [C]//Conference Proceedings LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society, November 18-21, 1996, Boston, MA, USA. New York: IEEE Press, 1996: 144-145.
- [9] Bond A E, Dapkus P D, O'Brien J D. Aperture placement effects in oxide-defined vertical-cavity surfaceemitting lasers[J]. IEEE Photonics Technology Letters, 1998, 10(10): 1362-1364.
- [10] Shchukin V, Ledentsov N N, Kropp J, et al. Singlemode vertical cavity surface emitting laser via oxideaperture-engineering of leakage of high-order transverse modes[J]. IEEE Journal of Quantum Electronics, 2014, 50(12): 990-995.
- [11] Unold H J, Golling M, Michalzik R, et al. Photonic crystal surface-emitting lasers: tailoring waveguiding

for single-mode emission [C]//Proceedings of 27th European Conference on Optical Communication (Cat. No. 01TH8551), September 30-October 4, 2001, Amsterdam, Netherlands. New York: IEEE Press, 2001: 520-521.

- [12] Danner A J, Yokouchi N, Raftery J J, et al. Focused ion beam post-processing for single mode photonic crystal vertical cavity surface-emitting lasers
 [C]//61st Device Research Conference. Conference Digest (Cat. No.03TH8663), June 23-25, 2003, Salt Lake City, UT, USA. New York: IEEE Press, 2003: 155-156.
- [13] Choquette K D, Danner A J, Raftery J J, et al. Vertical cavity photonic crystal coupled-defect lasers for optical interconnects[C]//2004 IEEE Aerospace Conference Proceedings, March 6-13, 2004, Big Sky, MT, USA. New York: IEEE Press, 2004
- [14] Lee K H, Baek J H, Hwang I K, et al. Squarelattice photonic-crystal vertical-cavity surface-emitting lasers [J]. Optics Express, 2004, 12 (17): 4136-4143.
- [15] Lü Z R, Zhang Z K, Wang H, et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701016.
 吕尊仁,张中恺,王虹,等.1.3 μm半导体量子点激

亡导仁, 张宁尼, 王虹, 寻. 1.5 μⅢ+寻体重了点微 光器的研究进展[J]. 中国激光, 2020, 47(7): 0701016.

- [16] Yang H P D, Hsu I C, Chang Y H, et al. Characteristics of InGaAs submonolayer quantumdot and InAs quantum-dot photonic-crystal verticalcavity surface-emitting lasers[J]. Journal of Lightwave Technology, 2008, 26(11): 1387-1395.
- [17] Xu X S, Wang C X, Du W, et al. Investigation of photonic crystal vertical-cavity surface-emitting lasers at 850 nm[J]. Physics, 2007, 36(1): 17-19.
 许兴胜, 王春霞, 杜伟, 等. 光子晶体垂直腔面发射 850 nm 波长激光器研究[J]. 物理, 2007, 36(1): 17-19.
- [18] Xie Y Y, Xu C, Kan Q, et al. High power single mode output low threshold current photonic crystal vertical cavity surface emitting lasers [C]//OFC/ NFOEC, March 4-8, 2012, Los Angeles, CA, USA. New York: IEEE Press, 2012: 1-3.
- [19] Martinsson H, Vukusic J A, Larsson A. Singlemode power dependence on surface relief size for mode-stabilized oxide-confined vertical-cavity surfaceemitting lasers [J]. IEEE Photonics Technology

Letters, 2000, 12(9): 1129-1131.

- [20] Furukawa A, Sasaki S, Hoshi M, et al. Highpower single-mode VCSELs with triangular holey structure [C]//Conference on Lasers and Electro-Optics, 2004. (CLEO), May 16-21, 2004, San Francisco, CA, USA. New York: IEEE Press, 2004: 1024-1025.
- [21] Xu D W, Yoon S F, Ding Y, et al. 1.3 μm In(Ga)As quantum-dot VCSELs fabricated by dielectric-free approach with surface-relief process [J]. IEEE Photonics Technology Letters, 2011, 23(2): 91-93.
- [22] Li X S, Ning Y Q, Jia P, et al. Rectangular mesa shaped vertical cavity surface emitting laser with shallow surface relief[J]. Chinese Journal of Lasers, 2014, 41(12): 1202005.
 李秀山, 宁永强, 贾鹏, 等. 浅面浮雕矩形台面垂直 腔面发射半导体激光器[J]. 中国激光, 2014, 41 (12): 1202005.
- [23] Unold H J, Grabherr M, Eberhard F, et al. Increased-area oxidised single-fundamental mode VCSEL with self-aligned shallow etched surface relief[J]. Electronics Letters, 1999, 35(16): 1340.
- [24] Unold J, Golling M, Mederer F, et al. Singlemode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching [J]. Electronics Letters, 2001, 37(9): 570-572.
- [25] Debernardi P, Unold H J, Maehnss J, et al. Singlemode, single-polarization VCSELs via elliptical surface etching: experiments and theory [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(5): 1394-1405.
- [26] Deppe D G, Huffaker D L. High spatial coherence vertical-cavity surface-emitting laser using a long monolithic cavity[J]. Electronics Letters, 1997, 33 (3): 211-213.
- [27] Unold H J, Mahmoud S W Z, Jager R, et al. Improving single-mode VCSEL performance by introducing a long monolithic cavity [J]. IEEE Photonics Technology Letters, 2000, 12 (8) : 939-941.
- [28] Wiemer M W, Aldaz R I, Miller D A B, et al. A single transverse-mode monolithically integrated long vertical-cavity surface-emitting laser [J]. IEEE Photonics Technology Letters, 2005, 17(7): 1366-1368.
- [29] Fischer A J, Choquette K D, Chow W W, et al. 5.2 mW single-mode power from a coupled-resonator vertical-cavity laser [C]//LEOS 2000. 2000 IEEE

Annual Meeting Conference Proceedings. 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting, November 13-16, 2000, Rio Grande, Puerto Rico, USA. New York: IEEE Press, 2000: 802-803.

- [30] Kardosh I, Demaria F, Rinaldi F, et al. Highpower single transverse mode vertical-cavity surfaceemitting lasers with monolithically integrated curved dielectric mirrors [J]. IEEE Photonics Technology Letters, 2008, 20(24): 2084-2086.
- [31] Wu Y A, Li G S, Nabiev R F, et al. Single-mode, passive antiguide vertical cavity surface emitting laser [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 629-637.
- [32] Yoo B S, Chu H Y, Park M S, et al. Transverse mode characteristics in amorphous-GaAs-antiguided vertical-cavity surface-emitting lasers [C]//Proceedings of European Meeting on Lasers and Electro-Optics, September 8–13, 1996, Hamburg, Germany. New York: IEEE Press, 1996: 11.
- [33] Zhou D L, Mawst L J. High-power single-mode antiresonant reflecting optical waveguide-type verticalcavity surface-emitting lasers [J]. IEEE Journal of Quantum Electronics, 2002, 38(12): 1599-1606.
- [34] Tee C W, Yu S F, Penty R V, et al. Transient response of ARROW VCSELs[J]. IEEE Journal of Quantum Electronics, 2005, 41(2): 140-147.
- [35] Więckowska M, Czyszanowski T, Almuneau G, et al. Antiresonant oxide island as a measure for

improved single-mode emission in VCSELs [C]// 2018 20th International Conference on Transparent Optical Networks (ICTON), July 1-5, 2018, Bucharest, Romania. New York: IEEE Press, 2018: 1-4.

- [36] Yang J M, Lin Y L, Huang Q Q, et al. Wavelength-tunable linearly polarized Yb-doped fiber laser based on tilted fiber grating [J]. Acta Optica Sinica, 2020, 40(3):0314003.
 杨锦民,林彦吕,黄千千,等.基于倾斜光栅的可调 谐线偏振掺镱光纤激光器[J].光学学报, 2020, 40 (3):0314003.
- [37] Zhou Y, Huang M C Y, Chang-Hasnain C J. Transverse mode control in high-contrast subwavelength grating VCSEL [C]//2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA. New York: IEEE Press, 2007: 1-2.
- [38] Kashino J, Inoue S, Matsutani A, et al. Transverse mode control of VCSELs using angular dependent highcontrast grating mirror [C]//2013 IEEE Photonics Conference, September 8-12, 2013, Bellevue, WA, USA. New York: IEEE Press, 2013: 244-245.
- [39] Zheng Z, Zou Y G, Shi L L, et al. High-contrast grating structure design for liquid crystal tunable vertical-cavity surface-emitting lasers [J]. Laser & Optoelectronics Progress, 2020, 57(1): 011402.
 郑舟, 邹永刚, 石琳琳, 等. 液晶可调谐 VCSEL 中 高对比光栅结构的设计[J]. 激光与光电子学进展, 2020, 57(1): 011402.